8.1 REVIEW $\mathcal{A N} \mathcal{N} \operatorname{PREVIEW}$
$\mathcal{D E F I N} \mathcal{N} I \mathcal{T} I O \mathcal{N}$
In statistics, a hypothesis is a claim or Stornontan about a property ----- of the -population
I hypothesis test (aka test of significance) is a proceduce ---- for testing a claim
8.2 $\mathcal{B A S I C S} O \mathcal{F} \mathcal{H Y P O} \mathcal{T H E S}$ IS $\mathcal{T E S} \mathcal{T} I \mathcal{N G}$
$\mathcal{P A R T}$ 1: $\mathcal{B A S}$ ILS $\operatorname{CON} \mathcal{N C E P T S}$ OF $\mathcal{H Y P O T H E S}$ IS $\mathcal{T E S}$ TING
The me thous presented in this chapter are based on the rare event rule for inferential statistics

RARE EVEN(RULE for INGERENTIALSTATISTICS
If, under a given as sumption, the -probability \uparrow
small we conclude that the assumption \qquad is probably not correct
 The null hypothesis denoted by H_{0} _-- is a statement -- that the value of a
population parameter \qquad is equal \qquad to some claimed \qquad value. The term null is used to indicate \qquad no change or no \qquad effect or no o difference \qquad The a alter native hypothesis denoted by H_{A}---- or H_{1} _- or Ha is the Statement that the -parameter fan a value that some how _-_differs from the null -- hypothesis

Tor the me thous of this chapter, the symbolic ---- form of the - alternative hypothesis \qquad mes we one of f face symporse \qquad
Ha_{a}
IDENTI $\mathcal{F Y} I \mathcal{N} G$ \qquad xt \qquad
START

Example 1: Examine the given statement, then express the null hypothesis and the alternative hypothesis in symbolic form.
a. The majority of college students have credit cards.
$H_{0}: p \leq \frac{1}{2}$
$H_{a}: P>\frac{1}{2}$
6. The mean weight of plastic discarded by households in one week is less than 1 kg .

$$
H_{0}: \mu \geqslant 1
$$

$H_{a}: \mu<1$

Test statistic for proportion:

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
$$

p is the proportion we assume to be true under the null. \widehat{p} is statistic from sample.

Test statistic for mean:

$$
z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}
$$

$$
\text { OR } \quad t=\frac{\frac{\downarrow}{x}-\mu}{\frac{s}{\sqrt{n}}}
$$

μ is the value of the mean we assume to be true under the null hypothesis.
Example 2: Find the value of the test statistic. The claim is that less than $1 / 2$ of adults in the United States have carbon monoxide detectors. A RR C Research survey of 1005 adults resulted in 462 who fave

$$
H_{a}: p<\frac{1}{2}
$$ carbon monoxide detectors.

$H_{0}: p \geq \frac{1}{2}$ (2) lest Stat.

$$
\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}=\frac{0.46-0.5}{\sqrt{\frac{(0.5)(0.5)}{1005}}} \approx-2.54
$$

$$
\begin{aligned}
& x=462 \begin{array}{l}
n \\
p
\end{array}=0.5 \\
& q=1-p \\
& q=1-0.5 \\
& q=0.5 \\
& \hat{p}=\frac{x}{n}=\frac{462}{1005}
\end{aligned}
$$

 $\subset \mathcal{R I T I C A L} V \mathcal{A L U E}, \mathcal{A N D} \mathcal{P}$-VALUE
The --test ----- Statistic ----- atone usually does not give us enough information to make a decision about the claim_ 6 eng _- tested ---. The following tools can 6 e used to understand and $^{\prime}$ - interpret -------- the - test
statistic
π The critical region (afar rejection region t is the Set ---- of all values --- of the Test ---- statistic that cause us to reject ------- the null hypothesis H_{0}
π The significance level (fer noted by \propto, is the probability that the test ------- statistic --- will faltint the critical region ----- when the null hypothesis \qquad is actually true if the test ------- Statistic --- falls in the critical --- region ------ we reject tho null hypotheo in $-\quad$ so is the probability -- of mating the mistake of rejection the null hypotheoin wien it is true
π a critical vo tue is any value that Separates --- the critical region ------ from the values ---- of the - test statistic that do not lead to rejection of the null hypotheoio ---....the critical - values --------- depend on the nature of the _null
hypothesis the sampling distribution tat applies, and ti significance level .The procedure can be summarized as follows:

Critical region in the left tail:

$$
\begin{array}{ll}
H_{0}: p \geq p_{0} \quad \text { or } & \begin{array}{l}
H_{0}: \mu \geqslant \mu_{0} \\
H_{a}: p<p_{0}
\end{array} \quad \begin{array}{l}
\text { if } \sigma \text { is known }
\end{array}
\end{array}
$$

Critical region in the right tail:

$$
\begin{aligned}
& H_{0}: p \leq P_{0} \text { or } \begin{array}{l}
H_{0}: \mu \leq \mu_{0} \\
H_{a}: \rho>P_{0} \quad H_{a}: \mu>\mu_{0}
\end{array} ~
\end{aligned}
$$

σ is unknown
σ is known
 of statistic \qquad that getting a Value \qquad of the test is at least an extreme _- as the one representing the sample data as uniting that the null hypothesis is true \qquad P. values can b_{e} fount after \qquad finding the area beyond --- the test ---- statistic

(test stat negative)

DELIS IONS AND CONCLUS IONS
q. value method: using the significance level α_{-}:

If prvatue α^{α} reject H_{0}
If q. value $>\alpha$ fail - reject Ho
Traditional method: If the test statistic falls within the $^{\text {w }}$ critical(rejection) region re--reject Ho. If the test statistic does not fall within the critical region fail to reject H_{0}
confidence intervals: a confidence interval estimate of a population parameter contains the likely values of that parameter \qquad . If a confidence interval io es not include claimed value of a population paramotor reject --- that claim
Example 3: Use the given information to find P-value.
a. The test statistic in a right-tailed test is $z=2.50$

$$
\begin{aligned}
p(z>2.50) & =1-0.9938 \\
& =0.0062 \leqslant p \text {-value }
\end{aligned}
$$

or

$$
\begin{aligned}
P(z>2.50) & =P(z<-2.50) \\
& =0.0062
\end{aligned}
$$

6. The test statistic in a two-tailed test is $z=-0.55$

$$
\begin{aligned}
P \text {-value } & =2 P(z<-0.55) \\
& =2(0.2912) \\
& =0.5824
\end{aligned}
$$

c. With $H_{1}: p$ 戞 $\frac{3}{4}$, the test statistic is $z=0.35$

$$
\begin{aligned}
p \text {-value } & =2 P(z>0.35) \\
& =2[1-P(z<0.35)] \\
& =2(1-0.6368)
\end{aligned}
$$

d. With $H_{1}: p<0.777$, the test statistic is $z=-2.95$

$$
=2(0.3632)
$$

$$
=0.7264
$$

$$
\begin{aligned}
p \text {-value } & =P(z<-2.95) \\
& =0.0016
\end{aligned}
$$

Example 4: S tate the final conclusion in simple nontechnical terms. Be sure to address the originalclaim. Originalclaim: The percentage of on-time U.S. airline flights is less than 75%. Initial conclusion: Reject the null hypoth sis.

$$
H_{a}: p<0.75 \rightarrow H_{0} \text { was rejected }
$$

There is significant evidence to support the claim that the percentage of on-time U.S. airline flights is less than 75\%.

Example 5: Identify the type I error and the type II error that correspond to the given hypothesis.
The percentage of Americans who believe that life exists only on earth is equal to 20%.
$H_{0}: p=0.20 \quad$ Type I error: Rejection the Claim that 20\% of Americans

$$
H_{a}: p \neq 0.20
$$ believe life exists only on Earth when that proportion is true.

Type II error: Falling to reject the claim that 20% of Americans believe life exists only on Earth when the proportion is really different than 20\%. $\mathcal{C O M P R E A E N S ~ I V E ~} \mathcal{H} \mathcal{M P O} \mathcal{T H E S}$ IS TEST
$\operatorname{CONF} I \mathcal{D E N C E} I \mathcal{N} \mathcal{N E R V A L} \mathcal{M E T} \mathcal{H O} \mathcal{D}$
for_L-七ailed_ aypotifesis tests construct_ a_confidence inter rad witt a Confidence level --- of 1 - α - but for a 1 -faced

confidence interval of $1-2 \alpha$.
a confidence interval estimate of a population proportion --- contains the likely --- values of tat parameter. We should
therefore reject al aim that the population parame ter has a Value that is not included in the confidence interval
8.3 TES TING A CLAIM ABO UI A PROPORIION

Test a claim about a pop. proportion $\mathcal{N O T A T I O N}$
$n=$ sample size or \# of trials
$p=$ pop. proportion assumed true under H_{0}

$$
\hat{p}=\frac{\chi}{n} \rightarrow \text { sample proportion } \quad q=1-p
$$

REQUIREMENTS

1. The - sample ---observations are a simple -fandom sample.
2. The couple. Conditions for a binomial -distribution are satisfied.

Fixed $\#$ of independent trials having constant probabilities and each trial has 2 outcome categories
3. The conditions $n p_{-} \geq 5$ and $n q \geq 5$ are both_ satisfied so the binomial dist. \qquad of _- Sample proportions can be approximated by a normal dist. \qquad with $\mu=n p$ \qquad ${ }_{\text {and }} \sigma=\sqrt{n p q}$ Note that - \mathbf{P} - is the - consumed - - propartion-used in the \qquad null
$\mathcal{T E S T} S \mathcal{T A T I S T I C} \mathcal{F} O \mathcal{R} \mathcal{T} S \mathcal{T} I \mathcal{N} G \mathcal{A} \mathcal{C L A I M} \mathcal{A B O} \mathcal{U C}$ A PROPORTION

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
$$

P - values:

Critical values:

Computer software and -_calculator designed f for_hypothesie_ tests of proportions us sally require _input con consisting of the sample ----- singe n and the number of Successes X, , ut the sample ---- proportion is often given instead of _X.

$$
\hat{p}=\frac{x}{n} \longleftrightarrow x=n \hat{p}
$$

Example 1: Identify the indicated values. Use the normal distribution as an approximation to the binomial distribution. In a survey, 1864 out of 2246 randomly selected adults in the United S dates said that texting while driving should be illegal (based on data from Zogby International). Consider a hypothesis test that uses a 0.05 significance level to test the claim that more than 80% of adults believe that texting while driving should be illegal.

$$
\begin{aligned}
& \text { a. What is the test statist } \\
& Z=\frac{\hat{p}-p}{\sqrt{\frac{\rho}{n}}} \\
& Z=\frac{0.8299-0.8}{\sqrt{\frac{(0.8)(0.2)}{2246}}}
\end{aligned}
$$

$$
\begin{aligned}
& x=1864 \\
& n=2246 \\
& p=0.80 \\
& q=1-0.8=0.2 \\
& \hat{p}=\frac{1864}{2246} \\
& \hat{p}=0.8299
\end{aligned}
$$

 test $n p \geq 5 \checkmark$ $n q \geq 5 \sqrt{122}$
6. What is the critical value?

1 -tailed test (right tail), $\alpha=0.05$

$$
\begin{aligned}
C, V & =Z_{0.05}=1.645 \\
& =1-P(z<3.529) \\
& =1-0.9999 \\
& =\underbrace{0.6001}
\end{aligned}
$$

There is significant evidence at the 5% level to reject the null hypothesis and support the claim that more than 80% of adults bel eve that texting while driving should be illegal.
Example 2: The company $\operatorname{Drug} \mathcal{T e s t S u c c e s s ~ p r o v i d e s ~ a " 1 - P a n e l - T \mathcal { H C } " t e s t ~ f o r ~ m a r i j u a n a ~ u s a g e . ~ A m o n g ~}$ 300 tested subjects, results from 27 subjects were wrong (either a false positive or a false negative). Use a 0.05 significance level to test the claim that less than 10% of the test results are wrong. Does the test appear to be good for most purposes?
a. Identify the null fypothe sis

$$
H_{0} ; \quad p \geq 0.1
$$

$$
\begin{aligned}
& x=27 \\
& n=300 \\
& \hat{p}=\frac{27}{300}=0.09 \\
& p=0.1 \\
& q=0.9 \\
& n p \geq 5 \rightarrow \text { yes } \\
& n q \geqslant 5 \rightarrow \text { yes } \\
& 123 \\
& \text { left } 1 \text {-tail test } \\
& \alpha=0.05
\end{aligned}
$$

c. Identify the test statistic

$$
\begin{aligned}
& z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}} \\
& z=\frac{0.09-0.1}{\sqrt{\frac{(0.1)(0.9)}{300}}}
\end{aligned}
$$

\square
$z \approx-0.5774$
Stat test 1-propztest ... calculate
1-PropzTest
prop<0.1
$z=-0.5773502692$
$\mathrm{p}=0.2818513864$
$\hat{p}=0.09$
$\mathrm{n}=300$
d. Identify the P-value or critical value (s)

Crit. Region
Fail to reject

$$
H_{0}
$$

$$
\begin{aligned}
z_{\alpha} & =z_{0.05} \\
& =-1.645
\end{aligned}
$$

e. What is your final conclusion?

There is not significant evidence at the 5\% level to support the claim that less than 10\% of the tests are wrong. It would depend on the philosophy of a company.
Example 3: In recent years, the town of $\mathcal{N e w p o r t ~ e x p e r i e n c e d ~ a n ~ a r r e s t ~ r a t e ~ o f ~} 25 \%$ for robberies (6 lased on $\mathcal{F B}$ d data). The new sheriff compiles records showing that among 30 recent robberies, the arrest rate is 30%, so she claims that her arrest rate is greater than the 25% rate in the past. Is there sufficient evidence to support her claim that the arrest rate is greater than 25% ?
a. Identify the null hypothes is

$$
H_{0}: p \leq 0.25 \text { or } p=0.25
$$

$$
p=0.25
$$

6. Identify the alternative hypothesis

$$
q=0.75
$$

$$
H_{a} ; p>0.25
$$

how it's given in homework

$$
n=30
$$

$n p=30(.25)>5$
$n q=30(.75)>5$

$$
\hat{p}=0.30
$$

$$
\begin{aligned}
& \hat{p}=0.30 \\
& \hat{p}=\frac{x}{n}+0.3=\left(\frac{x}{30}\right)^{36}
\end{aligned}
$$

CREATED BY SHANNON MARTIN GRACEY
need for $\rightarrow x=9$
calculator 124
$\alpha=0.05$
(common α level)
$1-$ tailed test (right)

$$
\begin{aligned}
& \begin{array}{l}
\text { c. Identify the tests statistic } \\
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}} \\
z=\frac{0.3-0.25}{\sqrt{\frac{(0.25)(0.75)}{30}}}
\end{array} \quad z \approx 0.63 .
\end{aligned}
$$

d. Identify the \mathcal{P}-value or critical value (s)

$$
\begin{aligned}
& C . V=z_{\alpha}=z_{0.05}=1.645 \\
& z=0.63 \\
& \text { doesn't lie } \\
& \text { in the crit. } \\
& \text { region } \\
& \text { e. What is your final conclusion? } \\
& \text { so fail to reject } H_{0} \quad z \text { : is yest tot }
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& P \text {-value }=P(z>\text { teststot }) \\
& \quad=P(z>0.63) \\
& =1-P(z<0.63) \\
& =1-0.7357 \\
& =0.2643
\end{aligned}\right.
$$ so we fail to reject

There's not significant evidence at the 5% level to support the new sheriff's.
claim that her arrest nate for robberies calculate is greater than 25 ?.

draw stat tract ipropzest

LES TING CLAIMS iBO UT A POPULATION MEAN (WITH O LN TN)
$O \mathcal{B I} \mathcal{E C T} I \mathcal{V E}$
$\mathcal{N O T A T I O N}$

$$
\mu_{\bar{x}}=3.5, \bar{x}=2.9375, n=40, \sigma=1.7078, \alpha=0.05,2 \text {-tailed test }
$$

Example 1: When a fair die is rolled many times, the outcomes of $1,2,3,4,5$, and 6 are equally likely, so the mean of the outcomes should be 3.5. The author drilled holes into a die and loaded it by inserting lead weights, then rolled it 40 times to obtain a mean of 2.9375. Assume that the standard deviation of the outcomes is 1.7078 , which is the standard deviation for a fair die. Use a 0.05 significance level to test the claim that outcomes from the loaded die have a mean different from the value of 3.5 expected with a fair die.
a. Identify the null hypothesis

$$
H_{0}: \mu_{x}=3.5
$$

c. Identify the test statistic

$$
z=\frac{\bar{x}-\mu_{\bar{x}}}{\frac{\sigma}{\sqrt{n}}} \rightarrow z=\frac{2.9375-3.5}{\frac{1.7078}{\sqrt{40}}} \rightarrow z=-2.08
$$

d. Identify the P-value or critical value (s)

$$
\begin{aligned}
p \text {-value } & =2 P(z<t e s t s t a t) \\
& =2 P(z<-2.08) \\
& =2(0.0188) \\
& =0.0376
\end{aligned}
$$

$$
H_{a}: \mu_{\bar{x}} \neq 3.5
$$ $\mu \neq 3.5$

$$
\mathrm{p}=0.0372396217
$$

$$
\bar{x}=2.9375
$$

$$
n=40
$$

e. What is your final conclusion?
since we reject $H_{0} 0.05$
6. Identify the alternative hypothesis

$$
-z_{\alpha / 2}=-z_{.025}=-1.96
$$

There's significant evidence at the 5% to support the claim that the mean of the loaded die is different than the mean of the fair die.

Example 2: Listed below are recorded speeds (in mi/h) of randomly selected cars traveling on a section
 speed limit of $65 \mathrm{mi} / \mathrm{h}$. Assume that the standard deviation of speeds is $5.7 \mathrm{mi} / \mathrm{h}$ and use a 0.01 significance level to test the claim that the sample data is from a population with a meangreater than $65 \mathrm{mi} / \mathrm{h}$.
$\begin{array}{lllllllllllllllllllll}68 & 68 & 72 & 73 & 65 & 74 & 73 & 72 & 68 & 65 & 65 & 73 & 66 & 71 & 68 & 74 & 66 & 71 & 65 & 73\end{array}$
$\begin{array}{lllllllllllllllllllll}59 & 75 & 70 & 56 & 66 & 75 & 68 & 75 & 62 & 72 & 60 & 73 & 61 & 75 & 58 & 74 & 60 & 73 & 58 & 75\end{array}$
a. Identify the null hypothesis
6. Identify the alternative hypothesis
c. Identify the test statistic
d. Identify the \mathcal{P}-value or critical value (s)
e. What is your final conclusion?
8.5 TES TING A CLAIM ABO UT A MEAN: SIGMA NOT KNO WN

IESTING CLAIMS ABO UT A POPULATION MEAN(WITH O NOT XNO WN)
$O \mathcal{B J} \mathcal{E} C \mathcal{T} I \mathcal{V}$ 仡

* We only knaw s, not σ
$\mathcal{N O T A T I O N}$
$n=$ sample size
$\mu_{\bar{x}}=$ pop mean of the samplemeans assumed true under H_{0}
$\bar{x}=$ sample mean
$s=$ gample Standard deviation

REQUIREMENTIS

1. The fample --- is a Simple - random- sample

SRSS.
2. The value \qquad of the population standard deviation \qquad σ-- is not - known 3. The population is nermally distributed and/or
n $n 30$.

$$
t=\frac{\bar{x}-\mu_{\bar{x}}}{\frac{s}{\sqrt{r}}}
$$

$$
{ }_{P \text {-values: }} \text { Table } A^{3}
$$

Critical values: calcula

CHOOSING THE CORRECT $\mathcal{M E T} \mathcal{H O D}$
When -- testing -_claim a about a population mean, first be sure that the sample data have been collected with an appropriate _Sampling \qquad method. If we
 of a claim a about μ _ might use the student t - dist. the \qquad normal dis stibution, or it might require _
\qquad nonparametric methods or bootstrapping e sampling techniques.

To test a Clam_-_ about a _pop \qquad Mean, use the -Student ----- - dist---------- when the sample is a
 -_Known_--, and ---one ---------- or _--both_- of these conditions is satisfied: The population is normally_ distributed or $n>30$

Example 1: Determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student t distribution, or ne other.
a. Claim about $\mathcal{F I C O}$ credit scores of adults: $\mu=678, n=12, \bar{X}=719, s=92$. The sample data appear to come from a population with a distribution that is not normaland σ is not known.
NEITHER
6. Claim about daily rainfall amounts in Boston:
$\mu<0.20$ in., $n=5 \lambda, \bar{x}=0.10$ in., $s=0.26$ in. The sample data appear to come from a population with a distribution that is very far from normal, and σ is known.
NORMAL DIST.

1. Use software or a \qquad graphing calculator .
2. If -- technology --- is not available, use $\tau_{\text {able }}$ a. 3 to identify a range of values_- as follows: use the number of _-degrees_- of freedoms to locate -- the relevant row of Table $\mathfrak{A} \cdot 3$, then determine where the test _-Statistic sus-relative \qquad to the \qquad t-values in that \qquad _row
 , Values_-_ by referring to the area _value given at the top_ of Table $\mathfrak{A - 3}$.

Example 2: Either use technology to find the \mathcal{P}-value or use \mathcal{T} able $\mathcal{A}-3$ to find a range of values for the P-value .
a. Movie Vie we Ratings: Two-tailed test wit f $n=15$, and test statistic $t=1.495$.
$0.1<p$-value <0.2

$$
\text { d.f. }=14
$$

6. Body Temperatures: Test a claim about the mean body temperature of healthy adults. Left-tailed test with $n=11$ and test statistic $t=-3.518$. d.f. $=10$
p-value < 0.005

* The positive t-values in the table yield the same
Example 3: Assume that a $S \mathcal{R S}$ has been selected from a normally distributed population and test the areas os given claim. A $\mathcal{S} R S$ of 40 recorded speeds (in $m i / k)$ is observed from cars traveling on a section of tienegaives, $\mathcal{H i g h w a y} 405$ in Los Angeles. The sample has a me an of $68.4 \mathrm{mi} / \mathrm{h}$ and a standard deviation of $5.7 \mathrm{mi} / \mathrm{h}$ (based on data from Sigalert). Use a 0.05 significance level to test the claim that the mean speed of all cars is greater that the posted speed limit of $65 \mathrm{mi} / \mathrm{h}$.
a. Identify the null fypothes is

6. Identify the alternative hypothesis

$$
H_{0}: \mu_{\bar{x}} \leq 65 \text { or } \mu_{\bar{x}}=65 \quad H_{a}: \mu_{x}>65
$$

$$
n=40
$$

c. Identify the test statistic

$$
\bar{x}=68.4
$$

$$
t=\frac{\bar{x}-\mu_{\bar{x}}}{\frac{s}{\sqrt{n}}} \rightarrow t=\frac{68.4-65}{\frac{5.7}{\sqrt{40}}} \rightarrow t \approx 3.77
$$

d. Identify the \mathcal{P}-value or critical value (s)

$$
d \cdot f=39
$$

critical
p-value:
e. What is your final conclusion?

There's significant evidence to support the Claim that cars are traveling faster than 65 mph on that stretch of the 405 .

$$
\begin{array}{r}
\text { d.f. }=14, t=1.495 \quad \text { since } 1.761<1.495<1.345 \\
\quad 0.10<p \text {-value }<0.20
\end{array}
$$

$$
d \cdot f=10, \quad t=-3.518
$$

$$
\text { Since }-3.518<-3.169
$$

$$
p \text {-value }<0.005
$$

Table A-3 $\quad t$ Distribution

Example 2: Assume that a $\mathcal{S} \mathcal{R}$ has been selected from a normally distributed population and test the given claim. The trend of thinner Miss America winners has generated charges that the contest encourages unhealthy diet habits among young women. Listed below are body mass indexes (BMI) of recent Miss America winners. Use a 0.01 significance level to test the claim that recent Miss America winners are from a population with a me an $\mathcal{B M I}$ less than 20.16, which was the $\mathcal{B M}$, for winners from the 1920 s and 1930 s.

$$
\begin{array}{llllllllll}
19.5 & 20.3 & 19.6 & 20.2 & 17.8 & 17.9 & 19.1 & 18.8 & 17.6 & 16.8
\end{array}
$$

a. Identify the null hypothesis

$$
H_{0}: \mu_{\bar{x}} \geq 20.16 \text { or } \mu_{\bar{z}}=20.16
$$

c. Identify the test statistic

$$
t=\frac{\bar{x}-\mu_{\bar{x}}}{\frac{s}{\sqrt{n}}} \rightarrow t=\frac{18.76-20.16}{\frac{1.19}{\sqrt{10}}} \rightarrow t \approx-3.72
$$

6. Identify the alternative hypothesis

$$
H_{a}=\mu_{\bar{x}}<20.16 \quad \begin{aligned}
& n=10 \\
& \bar{x}=18.76 \\
& S=1.19 \\
& G \quad t-\text { dist } \\
& 1-\operatorname{taie}, \text { loft } \\
& \alpha=0.01
\end{aligned}
$$

T-Test
d. Identify the \mathcal{P}-value or critical value (s)

$$
\begin{aligned}
& C . V: t_{9,0.01}=-2.821 \\
& \text { since }-3.72<-2.821
\end{aligned}
$$

our test stat falls in rejection region so we reject H_{0}
e. What is your final conclusion? There's significant evidences to support the claim that the B.M.I. of recent Miss America winners is less 30 's.
$\mu<20.16$

$$
\begin{aligned}
& t=-3.732190813 \\
& p=0.0023407995 \\
& \bar{x}=18.76 \\
& S x=1.186217143 \\
& n=10
\end{aligned}
$$

since $0.005<0.01$

$$
p \text {-value }<\alpha
$$

we reject H_{0}.
test stat $\rightarrow p$-value
table p-value:
9.2 INFERENCES ABOUI TWO PROYORIIONS
$\mathcal{B J} \operatorname{ECT} I \mathcal{V} \mathcal{E} S$
Test a claim about 2 pop, proportions or construct a CI of the difference between 2 pop. proportions $\mathcal{N O T A T I O N} \mathcal{F} O \mathcal{R} \mathcal{T} W O$ PROPORTIONS
$p_{1}=$ pop. proportion for pop $1 \quad \hat{p}_{1}=\frac{x_{1}}{n_{1}}$
$n_{1}=$ sample size for pop. $1 \quad \hat{q}_{1}=1-\hat{p}_{1}$
$x_{1}=\#$ of successes in the sample The corresponding notations from pop. 1 $p_{2}, n_{2}, x_{2}, \hat{p}_{2}$, and \hat{q}_{2} apply to population 2.
POOLED SAMPLE PROPORTION The - pooled ---- sample proportion denoted by \bar{p}_{--}and is given $6 y$:

$$
\bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}, \bar{q}=1-\bar{p}
$$

REQ UT RESENTS

1. The - sample -- prop---------are from - 2 simple random_ samples that are independent \qquad
2. Tor each of the ___ samples, the number of Successes is at least ----- and the number of failures \qquad is at, \qquad least 5 . That is, $n p \geq 5$ and $n q \geq 5$ for each of the two samples.

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\bar{p}_{1} \bar{q}_{1}}{n_{1}}+\frac{\bar{p}_{2} \bar{q}_{2}}{n_{2}}}}
$$

$P_{1}-P_{2}=0$ under the null

$$
\hat{p}_{1}=\frac{x_{1}}{n_{1}} \text { and } \hat{p}_{2}=\frac{x_{2}}{n_{2}}
$$

P - value:

Critical values: Table Ar calculator
$\operatorname{CONGIDEXCE} I \mathcal{N} \mathcal{N E X V A L} \mathcal{E S T I M A T E}$ Of $p_{1}=p_{2}$
The confidence intervalestimate of the difference $\rho_{1}=p_{2}$

$$
\hat{p}_{1}-\hat{p}_{2}-E<p_{1}-p_{2}<\hat{p}_{1}-\hat{p}_{2}+E
$$

where the margin of error
$E_{\text {is given } 6 y}$

$$
E=z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
$$

Rounding: Round the confidence interval limits to___ significant digits.
cautioverw when testing a claim about ---- 2 method and the critical ------ method are equivalent, but they are not equivalent to the - - confidence interval method!!! If you want to \qquad test a claim about \qquad 2 pop proportions
use the \qquad CV. method or the - P -value estimate
\qquad proportions the --difference
\qquad become - 2 pop
\qquad interval

Example 1: In a 1993 survey of 560 college students, 171 said they used illegal drugs during the previous year. In a recent survey of 720 college students, 263 said that they used illegal drugs during the previous year (based on data from the $\mathcal{N a t i o n a l}$ Center for $\mathcal{A d d i c t i o n}$ and S substance $\mathcal{A b u s e}$ at Colombia University). Use a 0.05 significance level to test the claim that the proportion of college students using illegal drugs in 1993 was less than it is now.

$$
\begin{aligned}
H_{0}: & P_{1}=P_{2} \\
& P_{1}-P_{2}=0
\end{aligned} \quad H_{a}: P_{1}<P_{2}
$$

$$
\begin{aligned}
& n_{1}=560 \\
& x_{1}=171 \\
& \hat{p}_{1}=\frac{171}{560} \approx 0.305 \\
& \hat{q}_{1}=0.695 \\
& n_{2}=720 \\
& x_{2}=263 \\
& \hat{p}_{2}=\frac{633}{770} \approx 0.365 \\
& \hat{q}_{2}=0.635 \\
& \alpha=0.05 \\
& p_{1}<p_{2} \\
& \bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}} \\
& \bar{p}=\frac{171+263}{560+720}
\end{aligned}
$$

$$
z \approx-2.25
$$

Conclusion:

There's significant evidence $\bar{q} \approx 0.661$ at the 5% level to support the claim that the proportion of college students usingillegal drugs in 1993 was less than it is now.

Example 2: Among 2739 female atom bomb survivors, 1397 developed thyroid diseases. Among 1352 male atom bomb survivors, 436 developed thyroid diseases (based on data from"Radiation Dose-Response Relationships for Thyroid $\mathfrak{N o d u l e s}$ and $\mathcal{A} u$ toimmune $\mathcal{T h y r o i d} \mathcal{D}$ is eases in \mathcal{H} hiroshima and \mathfrak{N} nagasaki $\mathcal{A t o m i c}$ Bomb Survivors 55-58 Years After Radiation Exposure," by Imaizumi, et al., Journal of the American Medical Association, Vol. 295, No.9).
a. Use a 0.01 significance level to test the claim that the female survivors and male survivors fave different rates of thyroid diseases.

$$
\begin{aligned}
& H_{0}: P_{1}=P_{2} \text { vs } H_{a}: P_{1} \neq P_{2} \\
& z=\frac{\left(\hat{p}_{1}-\hat{P}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{q} \bar{q}}{n_{1}}+\frac{\bar{p} \bar{q}}{n_{2}}}} \\
& z=\frac{(0.510-0.32)-(0)}{\sqrt{\frac{(0.448)(0.552)}{2739}+\frac{(0.448)(0.552)}{1352}}}
\end{aligned}
$$

$$
P_{1}=P_{2}
$$

$$
\alpha=0.01
$$

$$
P_{1} P_{2}=0
$$

2-tailed test

$$
z \approx 11.37
$$

$$
\begin{aligned}
\rho \text {-value } & =2 \rho(z>\text { rest stat }) \\
& \Rightarrow p(z>11.37)
\end{aligned}
$$

$$
n_{1}=2739
$$

$$
x_{1}=1397
$$

$$
\begin{aligned}
& =2 p(z>11.37) \\
& =2 \sim(z<1137
\end{aligned}
$$

$$
\begin{aligned}
& =2[p(z>1-p(z<11.37)] \\
& =\left[e^{-1}+c^{\prime}\right.
\end{aligned}
$$

$$
\hat{p}_{1}=\frac{1397}{2739}
$$

$$
\begin{array}{lll}
=[[1-p(z<11.37) \text { echo } & \hat{p}_{1} \approx 0.510 \\
=2[1-0.9999] & \text { rede } & \\
=0.05 & \hat{q}_{1}=0.490
\end{array}
$$

There's Si Si, evidence to suppose the $n_{2}=1352$
6. Construct the confidence interval corresponding to the hypothesis test conducted with a $0.01 / 2$

ค 人

$$
\hat{p}_{1}-\hat{P}_{2}-E<p_{--1}-p_{2}<\hat{p}_{1}-\hat{p}_{2}+E
$$

$$
\left.0.510-0.322<p_{1}-p_{2}<0.510-0.322+1\right]^{p-}
$$

$$
0.188-0.0409<p_{1}-p_{2}<0.188+0.0409
$$

$$
0.1471<p_{1}-p_{2}<0.2289
$$

$$
2 .^{515}
$$

$\hat{P}_{2} \approx 0.322$

$$
\hat{q}_{2}=0.618
$$

$$
\sqrt{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

$E=z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}$

$$
E=z_{0.005} \sqrt{\frac{(510)(.499)}{2739}+\frac{(322)(.022}{1352}}
$$

$$
\bar{q}=0.552
$$

c. What conclusion does the confidence interval suggest?

We are 99% confident the the difference between the rates of thyroid disease between female survivors and male survivors lies between 0.1471 and 0.2289 . Since 0 is not a likely difference, the CI suggest the these rates are different.
9.3 INEFERENCES ABOUT TWO MEANS: INNDEPENDENT SAMPLES
 $\mathcal{D E F I X I T I O N}$

Two --samples \qquad are independent if the sample --values from one population are _not related \qquad to or somenfoum naturally -- paired or matched \qquad with the sample _-_Values_-_ from the other population.
Two__Gamples__-_ are dependent if the sample values are _paired.
Inferences about Means of \mathcal{T} wo Independent Populations, With σ_{1} and σ_{2} Unknown and Not Assumed to be Equal
$\mathfrak{N O T A T I O N}$

Population 1:
$\mu_{1}=$ mean of pop. I assumed $s_{1}=$ sample standard deviation from true under the null pop. 1 σ_{1} is unknown
$\bar{x}_{1}=$ Sample mean from $\quad n_{1}=$ sample size of pop. 1
 REQUIREMENTS

1. σ_{1-} and
equal
2. The 2 samples are independent
 \qquad sample
3. Either or 6 ooh of these conditions are satisfied: The two sample Singe ar ar

- large_(with $n_{1} \geq 30$ and $n_{2} \geq 30$) or 60 th samples come from populations having

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

Degrees of freedom: When finding _critical valuep_or or
freedom.

1. In this book we use the conservative estimate: $d f=$ Small on of $n_{1}-1$ and $n_{2}-1$
2. Statistical software packages typically use the more accurate but more difficult estimate given below:

$$
\mathrm{df}=\frac{(A+B)^{2}}{\frac{A^{2}}{n_{1}-1}+\frac{B^{2}}{n_{2}-1}}, \quad A=\frac{s_{1}^{2}}{n_{1}}, \quad B=\frac{s_{2}^{2}}{n_{2}}
$$

P-values and critical values: Use Table $\mathcal{A}-3$.

The confidence interval estimate of the difference $\mu_{+}-\mu_{2}$

$$
\begin{aligned}
& \bar{x}_{1}-\bar{x}_{2}-E<\mu_{1}-\mu_{2}<\bar{x}_{1}-\bar{x}_{2}+E \\
& E=t_{d . f .,}, \alpha_{2} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}
\end{aligned}
$$

and the number of degrees of freedom af is as described above for hypothesis tests.

EQUIVALENCE OF METHODS
Example 1: Determine whether the samples are independent or dependent.
a. To test the effectiveness of Lipitor, cholesterollevels are measured in 250 subjects before and after Lipitor treatments.

6. On each of 40 different days, the author measured the voltage supplied to his home and he also measured the voltage produced by his gasoline powered generator.

Example 2: Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A simple random sample of 13 four-cylinder cars is obtained, and the braking distances are measured. The mean braking distance is 137.5 feet and the standard deviation is 5.8 feet. $\mathcal{A} \mathcal{S} \mathcal{R} S$ of 12 six-cylinder cars is obtained and the braking distances have a mean of 136.3 feet with a standard deviation of 9.7 feet (based on Data Set 16 in Appendix \mathcal{B}).
a. Construct a 90% CI estimate of the difference between the mean braking distance of four cylinder cars and six-cylinder cars.

$$
\bar{x}_{1}-\bar{x}_{2}-E<\mu_{1}-\mu_{2}<\bar{x}_{1}-\bar{x}_{2}+E
$$

$$
137-\frac{136.3-5.800<\mu_{1}-\mu_{2}<137-136.3+5.800}{-5.1<\mu_{1}-\mu_{2}<6.5}
$$

$$
\begin{aligned}
& n_{1}=13 \\
& \bar{x}_{1}=137.5 \\
& s_{1}=5.8 \\
& n_{2}=12 \\
& \bar{x}_{2}=136.3 \\
& s_{2}=9.7 \\
& \alpha=0.10 \\
& \alpha_{2}=0.05 \\
& d . f=12-1=11 \\
& s^{2}
\end{aligned}
$$

6. Does there appear to be a difference between the two means?

No since O is a likely value of the difference between

$$
E=t_{d, f, \alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$ the population means.

$$
E=t_{11,0.05} \sqrt{\frac{(5.8)^{2}}{13}+\left(\frac{(9.7)^{2}}{12}\right.}
$$

$$
E=1.796(3.2293) \approx 5.800
$$

c. Use a 0.05 significance level to test the claim that the mean braking distance of four-cylinder cars is greater than the mean braking distance of six-cylinder cars it
A 1 -tailed test at $\alpha=0.05$ will yield the same conclusion as the 90% CI for the diff of the pop. means.
There is not significant evidence at the 5% level to support the claim that the mean braking distance of four-cylinder cars is greater than the mean braking distance of six-cylinder cars.

2-SampTInt
2个T-Test...
3:2-SampZTest...
4:2-SampTTest...
5:1-PropZTest...
6:2-PropZTest...
7:ZInterval...
8:TInterval...
9:2-SampZInt...
0ゅ2-SampTInt...

2-SampTInt

$$
\begin{aligned}
& (-4.405,6.8051) \\
& \mathrm{d} f=17.69228221 \\
& \mathrm{x}_{1}=1337.5 \\
& \bar{x}_{2}=136.3 \\
& \mathrm{~S}_{1}=5.8 \\
& S \times 2=9.7 \\
& \mathrm{n} 1=13 \\
& \mathrm{n} 2=12
\end{aligned}
$$

9.4 INSFERENCES FRO SM DEPENDDENITS AMPLES

Key Concept...
In this section we present methods for testing hypotheses and constructing confidence intervals involving the \qquad mean of the \qquad difference o of the value
\qquad of two - dependent -- Samples - -dependent samples, there is some $\{$ elationshup whereby each value in one sample is _, p
corresponding value in the other sample. Here are two typical examples of dependent samples:
π Each pair of sample values consists of two measurements from the same
subject
π Each pair of sample values consists of a matched pan_
π Each pair of sample values consists of two measurements from the
subject
π Each pair of sample values consists of a matched pall
π Each pair of sample values consists of two measure me rents from the
subject
π Each pair of sample values consists of a _matched pair pared-- with a
\qquad distribution and standard Because the hypothesis test and CI use the same \qquad
\qquad

 trio mean - difference equals \qquad 0
 watetere the -confidence \qquad instates \qquad 0 .flare are no o teat
 serves as a reasonably good approximation, so the following methods are commonly used.
$d=$ individual differen $s_{d}=$ Sample standard dev. of the paired between the 2 values in differences
the matched pair
$\mu_{d}=$ mean value of diff. d
for pop. of all pains of data
$\bar{d}=$ mean value of the paired $n=\#$ of pairs of data differences for the paired
sample data REQ UIREMEN(TS

1. The fample data are paired/dependent
2. The samples are \qquad
3. Either or both of these conditions are satisfied: The number of pours of _-data \qquad is \qquad large $(n \geq 30$) or the pairs of values have _distributions that are from a population that is approximately normal
$\mathcal{H Y} \mathcal{P O} \mathcal{T H E S}$ IS $\mathcal{T E S T} \mathcal{F} O R$ DESEX $\mathcal{D E X N T}$ SAMPLES

$$
t=\frac{\bar{d}-\mu_{d}}{\frac{s_{d}}{\sqrt{n}}}
$$

Degrees of $\mathfrak{F r}$ freedom: $\quad n-1$
\mathcal{P} - values and critical values: Use Table $\mathcal{A}-3$.
CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES

$$
\bar{d}-E<\mu_{d}<\bar{d}+E
$$

where

$$
E=t_{d \cdot f \cdot, \alpha / 2}\left(\frac{s_{d}}{\sqrt{n}}\right)
$$

$$
d \cdot f=n-1
$$

Example 1: Assume that the paired sample data are $\mathcal{S R S}$ s and that the differences have a distribution that is approximately normal.
a. Listed below are BIs of college students.

April $\mathcal{B M I}$	20.15	19.24	20.77	23.85	21.32
September $\mathcal{B M I}$	20.68	19.48	19.59	24.57	20.96

i. Use a 0.05 significance level to test the claim that the mean change in $\mathcal{B M}$ for all

$$
\begin{aligned}
& t=\frac{\bar{d}-\mu_{d}}{\frac{s_{d}}{\sqrt{n}}} \\
& t=\frac{0.002-0}{\frac{0.7745}{\sqrt{5}}}
\end{aligned}
$$

$$
\text { students is equal to o. } \quad H_{0}: \mu_{d}=0
$$

$$
H_{a}: \mu_{d} \neq \partial
$$

$$
\left\lvert\, \begin{aligned}
& t \approx 0.00577 \\
& p \text {-value }>0.20
\end{aligned}\right.
$$

1-Var Stats
List:L3
FreaList: Calculate
and $0.20 \geq 0.05$
we fill to reject H_{0}.

Not sig. evid. e 5\% level to claim that the BMI is different. ii. Construct a 95% CI estimate of the change in $\mathcal{B M I}$ during fresfmanyear.
$-0.9597<\mu_{d}<0.96372$
iii. Does the CI include zero, and what does that suggest about $\mathcal{B M I}$ during freshman year?

The CI includes zero which suggests that there's no significant difference in BMI from September to April at th 5\% level.

$$
\begin{aligned}
& \bar{d} \rightarrow \bar{x}=0.002 \text { 1-Var Stats }^{1} \\
& \Sigma \mathrm{x}=0.01 \\
& \Sigma x^{2}=2.3997 \\
& S_{d} \sum_{\left.\begin{array}{c}
\sum_{x}=0.7745450277 \\
\sigma x
\end{array}\right)=0.6927741335} \\
& \begin{array}{l}
\sigma x=0.6927741335 \\
n=5
\end{array} \\
& \mathrm{n}=5 \\
& \min X=-0.72 \\
& \downarrow Q_{1}=-0.625
\end{aligned}
$$

